On Commutativity of Prime Rings with Symmetric Left θ-3- Centralizers
نویسندگان
چکیده
Let R be an associative ring with center Z(R) , I a nonzero ideal of and be automorphism of . An 3-additive mapping M:RxRxR is called symmetric left -3-centralizer if M(u1y,u2 ,u3)=M(u1,u2,u3)(y) holds for all y, u1, u2, u3 In this paper we shall investigate the commutativity prime rings admitting satisfying any one following conditions : (i)M([u ,y], u3) [(u), (y)] = 0 (ii)M((u ∘ y), ((u) (y)) (iii)M(u2, (u2) (iv) M(uy, (uy) (v) For u2,u3 u ,y
منابع مشابه
On centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملOn Θ-centralizers of Semiprime Rings (ii)
The following result is proved: Let R be a 2-torsion free semiprime ring, and let T : R → R be an additive mapping, related to a surjective homomorphism θ : R → R, such that 2T (x2) = T (x)θ(x) + θ(x)T (x) for all x ∈ R. Then T is both a left and a right θ-centralizer.
متن کاملon centralizers of prime rings with involution
let $r$ be a ring with involution $*$. an additive mapping $t:rto r$ is called a left(respectively right) centralizer if $t(xy)=t(x)y$ (respectively $t(xy)=xt(y)$) for all $x,yin r$. the purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملCentralizers on prime and semiprime rings
The purpose of this paper is to investigate identities satisfied by centralizers on prime and semiprime rings. We prove the following result: Let R be a noncommutative prime ring of characteristic different from two and let S and T be left centralizers on R. Suppose that [S(x), T (x)]S(x) + S(x)[S(x), T (x)] = 0 is fulfilled for all x ∈ R. If S 6= 0 (T 6= 0) then there exists λ from the extende...
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mag?allat? al-qa?disiyyaat? li-l-?ulu?m al-s?irfat?
سال: 2021
ISSN: ['1997-2490', '2411-3514']
DOI: https://doi.org/10.29350/qjps.2021.26.4.1392